
Gang Liao and Daniel J. Abadi

FileScale
Fast and Elastic Metadata Management for Distributed File Systems

Data Warehouse / LakeHouse

Storage Systems

• Amazon S3
• Google Colossus
• HDFS

New challenge:
When metadata is big data

Metadata Management in HDFS

Metadata Management in HDFS

Scalability Problems

• Memory bottleneck

• Network bottleneck
Concurrent user requests
DataNodes heartbeats

FileScale

System Architecture of FileScale

A three-tiered architecture

• Database Layer

• ACID-compliant SQL database
systems: VoltDB, Apache Ignite, etc.

• Relational data model

• Distributed transactions

• Pre-compiled stored procedures

FileScale

System Architecture of FileScale

A three-tiered architecture

Primary key (parent name, inode name) → full path

FileScale - Database Layer

Data Model in FileScale

Primary key (parent name, inode name) → full path

FileScale - Database Layer

Compared with using id as the primary key, what are the advantages?

• Path Resolution: validate the entire path and check user permissions and quota
configuration recursively

HDFS

Primary key (parent name, inode name) → full path

FileScale - Database Layer

Compared with using id as the primary key, what are the advantages?

• Parallel Path Resolution

FileScaleHDFS

FileScale - Database Layer

Compared with using id as the primary key, what are the advantages?

• Parallel Path Resolution

• Subtree operations

Primary key (parent name, inode name) → full path

FileScale

FileScale - Database Layer

Compared with using id as the primary key, what are the advantages?

• Parallel Path Resolution

• Subtree operations via the SQL LIKE or STARTS WITH clause

Primary key (parent name, inode name) → full path

FileScale Chmod Operations

FileScale - Caching Layer

System Architecture of FileScale

• Database Layer

• Caching Layer

• Object cache<fullpath, inode object>

• Cache eviction policies

A three-tiered architecture

FileScale - Caching Layer

System Architecture of FileScale

• Database Layer

• Caching Layer

• Object cache<fullpath, inode object>

• Cache eviction policies

A three-tiered architecture

Async propagation
- Periodic flush

Sync propagation
- Expiration
- Multi-partition requests

FileScale - Caching Layer

What is the difference between HDFS and FileScale?

• HDFS: in-memory pointers between directory and files

HDFS

FileScale - Caching Layer

What is the difference between HDFS and FileScale?

• HDFS: in-memory pointers between directory and files

• FileScale: path resolution → cache key

HDFS FileScale

FileScale - Caching Layer

The database log is not sufficient to guarantee system-wide durability.

We build a write-ahead
logging mechanism
based on an extension
of HDFS’s EditLog.

The workflow of file-create (metadata) operation

FileScale - Proxy Layer

System Architecture of FileScale

• Database Layer

• Caching Layer

• Proxy Layer

• Horizontally scales the name service

• Disjoint partition of the name space

• Multi-partition (multi-NameNode)
transactions

A three-tiered architecture

FileScale - Proxy Layer

Mount Table in Proxy Layer

Mount Table

• Stored in Zookeeper

FileScale - Proxy Layer

Mount Table

• Stored in Zookeeper

• Cached in the routers and
client-side.

Cached Mount Table in Routers and Client-side

FileScale - Proxy Layer

Request Routing

• Proxy mode

• A middleware layer

• Watch mode
• Save a network hop

• Cached in client-side

Request Routing in FileScale

FileScale - Proxy Layer

Request Routing

• Proxy mode

• A middleware layer

• Watch mode
• Save a network hop

• Cached in client-side

• Preventing Stale Read ?

Request Routing in FileScale

FileScale - Proxy Layer

Preventing Stale Read

• A recent-memory of paths
in each NameNode

• Short Time to Live (TTL)
for each moved path in
memory

• Re-forward requests to
the right NameNode

Request Routing in FileScale

On occasion, a name space partition may be moved from one NameNode to
another, and causing misrouting of requests.

FileScale: Multi-partition Requests

Move a folder across NameNodes

All data accessed by the transaction are removed from cache and prevented from
being brought into cache while the transaction is ongoing.

Concurrency Control

FileScale: Create and Open Operations

The throughput of basic operations including create, open on a EC2 instance — t3a.2xlarge

Throughput when scaling NameNodes

FileScale: Scalability Experiment

FileScale

System Architecture of FileScale

• Database Layer

• Caching Layer

• Proxy Layer

• https://github.com/umd-dslam/
FileScale

• ~40k LoC

A three-tiered architecture

https://github.com/umd-dslam/FileScale
https://github.com/umd-dslam/FileScale

Thank You!

Cache Miss Penalty
FileScale - Caching Layer

Large directory experiment
FileScale - Caching Layer

FileScale: Multi-Partition Transactions

Dirty data flush penalty

Distributed chmod and move operations

• Cache Flushing

• Distributed Transactions

Multi-Partition Requests

System Comparison

System Comparison

Pavan Edara and Mosha Pasumansky, Google BigQuery, PVLDB 2021

“By treating metadata management similar to data management, we built a
system that can store very rich metadata and scale to very large tables,
while also providing performant access to it from the query engine.”

“Storing file metadata in BigTable allowed Colossus to scale up by over 100x
over the largest GFS clusters.”

Dean Hildebrand and Denis Serenyi, Google Cloud Blog, April 19, 2021
Colossus under the hood: a peek into Google’s scalable storage system

Big Metadata: When Metadata is Big Data

34

https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
http://vldb.org/pvldb/vol14/p3083-edara.pdf

Primary key (parent name, inode name) → full path

FileScale - Database Layer

Compared with using id as the primary key, what are the advantages?

