Bullion: A Column Store for Machine Learning

Gang Liao Ye Liu Jianjun Chen Daniel J. Abadi CIDR 2025, Amsterdam, Netherland

In ByteDance字节跳动

Outlines

- Background & Motivation
- Challenges Posed by Modern ML Workloads
 - Data Compliance
 - Native Handling of Vectors
 - Wide Table Projection
 - Storage Quantization
 - Multimodal Data Storage
 - Cascading Encoding Framework
- Conclusion

Transition to Columnar Storage

Row-Oriented Storage (Pre-2000s):

- Data stored row-by-row.
- Efficient for transactional workloads (e.g., CRUD operations).
- **Poor for** analytics due to high I/O costs and limited parallelism.

- Columnar Storage (2000s Onwards):
 - Projects like C-Store and X100 shifted to column-by-column storage.
 - **Optimized for analytics** with better compression and parallelism.

Strengths of Column Stores

- Efficient Compression: Better ratios, direct operations on compressed data.
- **Faster Queries**: Skip irrelevant columns, leverage SIMD for parallelism.
- **Broad Adoption**: Formats like **Parquet** and **ORC** are now industry standards, widely supported by query engines in Lakehouse.

Machine Learning Workloads: A Rising Demand

- Key Use Cases
 - Ads & Recommendations: Large-scale feature sets for personalized ranking.
 - **Generative AI**: Multimodal data (text, images, video) for training and serving.
 - **LLM-powered Apps**: High-dimensional embeddings, real-time vector search.

- Limitations of Existing Columnar Formats
 - **Data Compliance**: High cost for in-place deletes.
 - Wide, Sparse Tables: Inefficient metadata handling.
 - **Vector Support**: Poor optimization for vector and embeddings.
 - **Storage Efficiency**: Limited quantization options for ML features.
 - Multimodal Data: Fragmented storage and access patterns.
 - Encoding Framework: Rigid, non-modular encoding schemes.
- **Objective**: Bullion is designed to address these challenges.

Challenge 1 - Data Compliance (1/3)

- Problem
 - Privacy regulations (e.g., GDPR, CCPA) require **timely and physical deletion**.
 - Traditional columnar storage **struggles** with efficient and compliant deletions.
 - Deleting just 5% of non-compliant data requires rewriting hundreds of petabytes per month at TikTok.
- Why
 - **Fragmentation**: Each column in a row is stored separately, requiring multiple modifications for a single row deletion.
 - **Block-based compression** complicates direct modifications of individual rows.
- Existing Approaches
 - **Traditional approach**: Full file rewrites consuming **~20x more I/O** than necessary.
 - **Out-of-Place Deletes**: Marks data as "hidden" but does not physically delete it..
 - Impact: ByteDance's CN region tables exceed 1EB, making rewriting prohibitively expensive.

Challenge 1 - Data Compliance (2/3)

- Bullion: Ensures compliance while minimizing file rewrites.
 - In-Place Deletes
 - Selective row-level physical deletion
 - Encoding-aware masking operations
 - No full decompression needed
 - Example
 - Bit-Packed Encoding:
 - Direct bit masking of fixed-width values
 - Dictionary Encoding:
 - Adds special mask value to dictionary
 - Updates reference to mask value
 - RLE Encoding:
 - Selective value masking & Updates run counts
 - FOR-delta Encoding:
 - Preserves base values & Masks deltas directly

Challenge 1 - Data Compliance (3/3)

- **Bullion:** Ensures compliance while minimizing file rewrites.
 - Integrity via Merkle Tree
 - Page-Level Checksums: H(C0PG0), H(C1PG0), etc.
 - Row Group Checksums: H(RG0), H(RG1), etc.
 - File-Level Checksum: Computed from row group checksums
 - Benefits
 - Minimal I/O: Only read affected pages
 - Fast Verification: Hierarchical structure

Challenge 2 - Native Handling of Vectors

- Background
 - Personalization ML workloads often involve vector-based sparse features.
 - These vectors exhibit **sliding window patterns**, where successive values change minimally.

This feature is used for tracking user interactions with advertising campaigns over time

Challenge 2 - Native Handling of Vectors

Problem

- Existing columnar formats (e.g., Parquet, ORC) support delta encoding only for primitive types (e.g., INT, BIGINT).
- Inefficient storage and high I/O costs for vectors with repetitive elements.
- **Bullion** optimized native support for vector types moving forward.

Challenge 3 - Wide Table Projection

Problem

- Columnar formats were designed for SQL workloads (e.g., sorting, grouping, aggregations).
- Current formats require full deserialization of metadata before column access.
- Modern ML workloads:
 - Feature counts often exceed 10,000, with most features rarely accessed in ByteDance ads tables.
 - High Metadata Overhead: Metadata access time scales linearly with the number of columns, increasing query latency.

Columns
16,256
812
277
143
120
46
29
18
10
8
5
5
3
1

Table 1. Statistical breakdown of column types in an AdParquet file.

Challenge 3 - Wide Table Projection

Solution

- Directly accesses buffer values from file footers, eliminating the need for deserialization.
- Keeps metadata **parsing time flat**, even for extremely wide tables.
- Performance Highlights
 - A consistent parsing time (<2ms) regardless of the number of features.

Challenge 4 - Storage Quantization

• Problem

 High storage and memory costs for dense embeddings and features in Recommender systems and LLMs.

Strict Production Constraints:

- Limited storage prevents adding new features and expanding embeddings.
- High costs for infrastructure and reduced model capabilities.
- Sparse Features: Integer-heavy data contributes significantly to the storage footprint.

Challenge 4 - Storage Quantization

- Solution
 - Feature Quantization
 - Converts high-precision FP32 embeddings to compact formats
 - Reduces storage, disk I/O, and memory costs while maintaining accuracy.
 - Mixed-Precision Strategy
 - Dynamically adjusts precision levels based on feature sensitivity.
 - Opportunities
 - **Native support** for reduced-precision formats (e.g., BF16, FP16).
 - **Dual-column strategy** for critical models to maintain FP32 accuracy.

Challenge 5 - Multimodal Data Storage

- Problem
 - LLM pre-training requires integration of diverse data types (**text, images, audio, video**)
 - Current dual-table approach architecture:
 - Design Rationale:
 - Meta tables (columnar): Optimized for metadata queries and analytics
 - Media tables (row-oriented): Better for large binary content storage
- Limitations of Current Approach
 - I/O Fragmentation:
 - Training requires constant switching between tables
 - Each media access needs metadata lookup first
 - Quality-Based Selection Issues:
 - Random access patterns when filtering by quality scores
 - Cannot leverage sequential read benefits

Challenge 5 - Multimodal Data Storage

Solution

- Store critical video frames **directly** in column format at **reduced resolution**.
- Maintain video indices in meta table for rare full-resolution access.
- Quality-aware organization: **presort data** by quality scores.
- Benefits:
 - Unified access through columnar storage.
 - Reduced I/O fragmentation.
 - Efficient access to high-quality training samples.

Challenge 6 - Cascading Encoding Framework

- Problem
 - ML workloads primarily use integer and floating-point data.
 - Current formats (e.g., Parquet, ORC):
 - Implement limited subset of encoding schemes.
 - **Tightly couple** encoding methods.
 - **Lack unified interfaces** for independent use.
 - Growing search space for optimal encoding combinations.
- Solution
 - Independent encoding module with cascading capabilities:
 - Built on insights from Nimble and BtrBlocks
 - **Universal design**: compatible with all columnar formats
 - Pluggable architecture enables format-agnostic integration
 - Modular, composable interfaces for encoding selection:
 - Mix and match different encoding schemes
 - Easy integration with existing columnar formats
 - Selective use of block compression for rarely accessed columns

Conclusion

Bullion: A Column Storage for Machine Learning

• Key Contributions

- Hybrid deletion compliance mechanism (**50x I/O reduction**)
- Optimized sparse feature encoding (**20,000+ columns supported**)
- Fast wide-table projection (**2ms vs 100+ms metadata access**)
- Storage-level feature quantization (2-4x space savings)
- Quality-aware multimodal data organization
- Unified cascading encoding framework

Real-World Impact

- Powering next-gen ML infrastructure:
 - i. Ads & Search & Recommendation Systems
 - ii. Generative AI & LLMs

THANKS

▶ ByteDance字节跳动