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Transition to Columnar Storage

• Row-Oriented Storage (Pre-2000s):

○ Data stored row-by-row.
○ Efficient for transactional workloads (e.g., CRUD operations).
○ Poor for analytics due to high I/O costs and limited parallelism.

• Columnar Storage (2000s Onwards):

○ Projects like C-Store and X100 shifted to column-by-column storage.
○ Optimized for analytics with better compression and parallelism.



Strengths of Column Stores

• Efficient Compression: Better ratios, direct operations on 
compressed data.

• Faster Queries: Skip irrelevant columns, leverage SIMD for 
parallelism.

• Broad Adoption: Formats like Parquet and ORC are now 
industry standards, widely supported by query engines in 
Lakehouse.



Machine Learning Workloads: A Rising Demand

• Key Use Cases

○ Ads & Recommendations: Large-scale feature sets for personalized ranking.
○ Generative AI: Multimodal data (text, images, video) for training and serving.
○ LLM-powered Apps: High-dimensional embeddings, real-time vector search.

• Limitations of Existing Columnar Formats

○ Data Compliance: High cost for in-place deletes.
○ Wide, Sparse Tables: Inefficient metadata handling.
○ Vector Support: Poor optimization for vector and embeddings.
○ Storage Efficiency: Limited quantization options for ML features.
○ Multimodal Data: Fragmented storage and access patterns.
○ Encoding Framework: Rigid, non-modular encoding schemes.

• Objective: Bullion is designed to address these challenges.



Challenge 1 - Data Compliance (1/3)
• Problem

○ Privacy regulations (e.g., GDPR, CCPA) require timely and physical deletion.
○ Traditional columnar storage struggles with efficient and compliant deletions.
○ Deleting just 5% of non-compliant data requires rewriting hundreds of 

petabytes per month at TikTok.
• Why

○ Fragmentation: Each column in a row is stored separately, requiring multiple 
modifications for a single row deletion.

○ Block-based compression complicates direct modifications of individual rows.

• Existing Approaches
○ Traditional approach: Full file rewrites consuming ~20x more I/O than necessary.
○ Out-of-Place Deletes: Marks data as "hidden" but does not physically delete it..
○ Impact: ByteDance's CN region tables exceed 1EB, making rewriting prohibitively 

expensive.



Challenge 1 - Data Compliance (2/3)

• Bullion: Ensures compliance while minimizing file rewrites.
○ In-Place Deletes

■ Selective row-level physical deletion
■ Encoding-aware masking operations
■ No full decompression needed

○ Example
■ Bit-Packed Encoding:

● Direct bit masking of fixed-width values
■ Dictionary Encoding:

● Adds special mask value to dictionary
● Updates reference to mask value

■ RLE Encoding:
● Selective value masking & Updates run counts

■ FOR-delta Encoding:
● Preserves base values & Masks deltas directly



Challenge 1 - Data Compliance (3/3)

• Bullion: Ensures compliance while minimizing file 
rewrites.

○ Integrity via Merkle Tree
■ Page-Level Checksums: H(C0PG0), 

H(C1PG0), etc.
■ Row Group Checksums: H(RG0), H(RG1), 

etc.
■ File-Level Checksum: Computed from row 

group checksums
○ Benefits

■ Minimal I/O: Only read affected pages
■ Fast Verification: Hierarchical structure



Challenge 2 - Native Handling of Vectors

• Background

○ Personalization ML workloads often involve vector-based sparse features.

○ These vectors exhibit sliding window patterns, where successive values 

change minimally.

This feature is used for tracking user interactions with advertising campaigns over time



Challenge 2 - Native Handling of Vectors

• Problem

○ Existing columnar formats (e.g., 
Parquet, ORC) support delta 
encoding only for primitive 
types (e.g., INT, BIGINT).

○ Inefficient storage and high I/O 
costs for vectors with repetitive 
elements.

• Bullion optimized native support for 
vector types moving forward.



Challenge 3 - Wide Table Projection

• Problem

○ Columnar formats were designed for SQL 
workloads (e.g., sorting, grouping, 
aggregations).

○ Current formats require full deserialization of 
metadata before column access.

○ Modern ML workloads:
■ Feature counts often exceed 10,000, 

with most features rarely accessed in 
ByteDance ads tables.

■ High Metadata Overhead: Metadata 
access time scales linearly with the 
number of columns, increasing query 
latency.



Challenge 3 - Wide Table Projection

• Solution

○ Directly accesses buffer values from file 
footers, eliminating the need for 
deserialization.

○ Keeps metadata parsing time flat, even 
for extremely wide tables.

• Performance Highlights

○ A consistent parsing time (<2ms) 
regardless of the number of features.



Challenge 4 - Storage Quantization

• Problem

○ High storage and memory costs for dense embeddings and features in 
Recommender systems and LLMs.

■ Strict Production Constraints:
● Limited storage prevents adding new features and expanding 

embeddings.
● High costs for infrastructure and reduced model capabilities.

■ Sparse Features: Integer-heavy data contributes significantly to the 
storage footprint.



Challenge 4 - Storage Quantization

• Solution

○ Feature Quantization

■ Converts high-precision FP32 embeddings to compact formats

■ Reduces storage, disk I/O, and memory costs while maintaining accuracy.

○ Mixed-Precision Strategy

■ Dynamically adjusts precision levels based on feature sensitivity.

○ Opportunities

■ Native support for reduced-precision formats (e.g., BF16, FP16).

■ Dual-column strategy for critical models to maintain FP32 accuracy.



Challenge 5 - Multimodal Data Storage

• Problem
○ LLM pre-training requires integration of diverse data types (text, images, audio, video)
○ Current dual-table approach architecture:

■ Design Rationale:
● Meta tables (columnar): Optimized for metadata queries and analytics
● Media tables (row-oriented): Better for large binary content storage

• Limitations of Current Approach
○ I/O Fragmentation:

■ Training requires constant switching between tables
■ Each media access needs metadata lookup first

○ Quality-Based Selection Issues:
■ Random access patterns when filtering by quality scores
■ Cannot leverage sequential read benefits



Challenge 5 - Multimodal Data Storage

• Solution

○ Store critical video frames directly in column 
format at reduced resolution.

○ Maintain video indices in meta table for rare 
full-resolution access.

○ Quality-aware organization: presort data by 
quality scores.

○ Benefits:
■ Unified access through columnar storage.
■ Reduced I/O fragmentation.
■ Efficient access to high-quality training 

samples.



Challenge 6 - Cascading Encoding Framework

• Problem
○ ML workloads primarily use integer and floating-point data.
○ Current formats (e.g., Parquet, ORC):

■ Implement limited subset of encoding schemes.
■ Tightly couple encoding methods.
■ Lack unified interfaces for independent use.

○ Growing search space for optimal encoding combinations.
• Solution

○ Independent encoding module with cascading capabilities:
■ Built on insights from Nimble and BtrBlocks
■ Universal design: compatible with all columnar formats
■ Pluggable architecture enables format-agnostic integration

○ Modular, composable interfaces for encoding selection:
■ Mix and match different encoding schemes
■ Easy integration with existing columnar formats

○ Selective use of block compression for rarely accessed columns



Conclusion

Bullion: A Column Storage for Machine Learning

● Key Contributions
○ Hybrid deletion compliance mechanism (50x I/O reduction)
○ Optimized sparse feature encoding (20,000+ columns supported)
○ Fast wide-table projection (2ms vs 100+ms metadata access)
○ Storage-level feature quantization (2-4x space savings)
○ Quality-aware multimodal data organization
○ Unified cascading encoding framework

● Real-World Impact
○ Powering next-gen ML infrastructure:

i. Ads & Search & Recommendation Systems
ii. Generative AI & LLMs
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