
SFVInt: Simple, Fast and Generic
Variable-Length Integer Decoding using Bit

Manipulation Instructions

Gang Liao, Ye Liu, Yonghua Ding, Le Cai, Jianjun Chen

 Introduction & Motivation

● Variable-Length Integers (Varints) are ubiquitous in data systems and frameworks

● Decoding LEB128 varints is a performance bottleneck
○ Unpredictable lengths lead to branch mispredictions
○ Limited vectorization opportunities

● Goal: Leverage BMI2 instructions to accelerate LEB128 decoding

Background - Varints
Varints: encode integers using variable number of bytes

● Smaller numbers use fewer bytes
● Space-efficient for data with predominantly small integers

 MSB ------------------ LSB Using 624486 as an example

 10011000011101100110 In raw binary

 010011000011101100110 Padded to a multiple of 7 bits

 0100110 0001110 1100110 Split into 7-bit groups

00100110 10001110 11100110 Add high 1 bits on all but last

(most significant) group to form bytes

 0x26 0x8E 0xE6 In hexadecimal

→ 0xE6 0x8E 0x26 Output stream (LSB to MSB)

LEB128: widely adopted varint
format

● Encodes integers as
sequence of bytes

● Continuation Bit: Most
significant bit of each byte
indicates continuation

● Decoding requires
byte-by-byte processing

Background - BMI2 Instructions

BMI2: Bit Manipulation Instruction Set 2

● Available in modern Intel and AMD CPUs
● Enables fast bit-level operations

Key instructions for varint decoding:

● PDEP: Parallel Bit Deposit
○ Deposit bits from src to dest based on mask

● PEXT: Parallel Bit Extract
○ Extract bits from src to dest based on mask

SFVInt Approach Overview

● Leverage BMI2 for fast and efficient varint decoding
● Simple: ~500 lines of code
● Fast: Up to 2x decoding speed compared to existing systems
● Generic: Unified C++ template for 32-bit and 64-bit integers
● Key ideas:

○ Use PEXT to extract integer counts and positions
○ Tailored masks for efficient integer extraction
○ Handle cross-boundary cases

Basic Varint Operations

Varint Encoding (referring to slide 3):

● Divide integer into bytes with the lower 7 bits actual store data
● Set continuation bit for all but last byte

Varint Decoding (focused):

● Read bytes and extract 7-bit groups

(with PEXT)

● Reconstruct original integer

https://en.wikipedia.org/wiki/Variable-length_quantity

BMI2-Enhanced Bulk Varint Decoding

Mask configuration for parallel processing

● Opt1: 6-byte mask (0x0000808080808080) process 6 bytes of encoded data
● Opt2: 8-byte mask (0x8080808080808080) process 8 bytes of encoded data
● Opt3: …
● Balance between decoding efficiency and instruction cache usage

Tailored masks for efficient integer extraction :

● Empirically, a 6 byte-mask configuration provides the best performance
● Here, for simplicity, we demonstrate with an 8 byte-mask

Extracting integer counts and positions:

● Use PEXT with mask to get varint structure (the continuation bits)
● Switch statement to handle different cases based on the varint structure

BMI2-Enhanced Bulk Varint Decoding I
1A. Mask configuration for parallel processing using an 8-byte mask
(0x8080808080808080), “word” is 8-byte segment in the encoded data for processing

value = _pext_u64(word, 0x8080808080808080)

If yields 0 (00000000), it indicates 8 complete integers in the segment

BMI2-Enhanced Bulk Varint Decoding II
1B. Mask configuration for parallel processing using an 8-byte mask
(0x8080808080808080), “word” is 8-byte segment in the encoded data for processing

value = _pext_u64(word, 0x8080808080808080)

If yields 63 (00011111), it indicates 3 complete integers in the segment

BMI2-Enhanced Bulk Varint Decoding III

2. Cross-Boundary Cases: integers can span multiple 8-byte segments, maintain
state using shift_bits and partial_value

● shift_bits: tracks bit displacement for cross-boundary integers
● partial_value: stores previously decoded partial integer

Second 8-byte segment (word) First 8-byte segment (word1)

If value = _pext_u64(word1,
0x8080808080808080)

yields 223 (11011111)

MSB is 1, meaning that the second integer
spans to the second 8-byte segment

Experimental Setup

AWS EC2 instances with diverse CPU architectures

● Intel: Ice Lake, Skylake, Cascade Lake, Haswell
● AMD: EPYC Milan, EPYC 7571, EPYC 7R32

Dataset distributions:

● Uniform: Balanced across value range
● Skewed: Mirror real-world LEB128 patterns

Workloads:

● W1: Uniform 32-bit integers
● W2-W4: Skewed distributions from real-world data

Comparison against Protobuf, Folly, Kudu, ORC

Performance Evaluation - Intel CPUs

SFVInt consistently outperforms other systems

● Up to 2x faster than Protobuf

Performance gap widens with increasing varint lengths

● SFVInt's BMI2 usage excels for multi-byte varints

Performance Evaluation - AMD CPUs

SFVInt on 3rd gen EPYC (Milan): Up to 40% faster

Slower on 2nd gen EPYC due to BMI2 emulation overhead

● Latency of PEXT/PDEP higher on older AMD CPUs

Future work: Dynamic selection or AMD-specific optimizations

Conclusions

SFVInt: A simple, fast, and generic varint decoding approach

● Leverages BMI2 instructions for efficiency
● Achieves up to 2x decoding speedup over existing methods

Future considerations:

● Improving performance consistency on AMD CPUs
● Exploring integration into data processing systems

Thank You

Thank you for your attention!

Contact Info:

● Gang Liao: gangliao@umd.edu
● Ye Liu: ye.liu@bytedance.com

